
0wning Antivirus
Alex Wheeler (alexbling@gmail.com)

Neel Mehta
(nmehta@iss.net)



Why AV?
Attractive Attack Surface

– Gateways, Servers, Clients, ISP’s, Third Party
Vendor Products

– Heterogeneous and Layered Environments



Why AV?

–Un-trusted Data Processing
• Must be reachable by external input to

be useful



Why AV?

–Run on a variety of Platforms
• Windows, Linux, Solaris, Mac



How Does AV work?
– Signature vs. Behavior

• Pattern-matching / regex
• File-format decomposition



How Does AV work?
– Enterprise vs. Consumer Architecture

• $$$ & Manageability



How Does AV work?
– Common Core Components

• IO filters
• Format Engines



How Does AV work?
– Standard Features

• Updates
• Multi-Threat detection



How Does AV work?
– Common Configurations

• Scan level
• Scan sizes
• Scan Method



Code Coverage - Signatures
– Field Values

• Max Len (eg. ARJ header len 0xa28)
• Magic (eg. PECOFF – “MZ” & “PE”)

– Field Sizes
• PE Section Header 0x28
• Tar Object 0x200

– Strings
• PECOFF – section labels, common libraries

– Ida Examples
• LHA
• ARJ
• UPX



Code Coverage – Core Utilities

– Read
• Easy to spot
• Closest audit point to un-trusted input
• Usually wrapped & buffered
• Some truncate length



Code Coverage – Core Utilities

– Allocation
• Any calculations to length are interesting
• Usually wrapped
• Some check 4 zero
• Some add to length for internal headers
• Some wrappers will truncate length



Code Coverage –Constructs

– Conversions
• String/Number
• Byte Ordering



Code Coverage –Constructs

– Checksum, CRC, etc.
• Easy to spot (ror, xor, etc. in a loop)
• Gives un-trusted input context



Code Coverage –Constructs

– Inherited File Structures & Commonly
Grouped Processors

• Are annoying to trace, due to indirection
• Can reveal more subtle unchecked copies
• Ex: Is MZ -> Is PE -> Is UPX



Audit Points - Inefficiencies

– Engine vs. Product differences
• Can be an issue when engine is stricter than the

product
• Ex: Recent Multi-vendor zip issues



Audit Points - Inefficiencies

– Default Scan Levels
• Can be an issue when product does not require

multiple extractions
• Ex: Packed and SFX



Audit Points - Inefficiencies

– File Size Limitations
• Small archives can contain large files



Audit Points - Inefficiencies

– Format Collisions
• Files conforming to multiple formats may be used

to trick state and evade detection



O-Day Detection
• Generally very minimal capabilities

– Measure virus propagation by number of
infected customers.

• Evasion?
– Write a new virus.



Audit Points – Memory Corruption

– Inconsistent Checks
• Length type mismatches can be abused to bypass

checks, wrap allocations, and overflow copies
• Negative offsets can be abused to bypass checks

and overflow copies



Audit Points – Memory Corruption

– Wrappers
• Allocators that modify length
• Reads that truncate length (reduces chance of

access violation on overflow on negative copies)



Audit Points – Memory Corruption

– Error-Prone Formats:
• 32 bit fields

– Interesting to examine sign and any calculations
– Ex: PECOFF – Packed & SFX, Archives



Audit Points – Memory Corruption
• String Based Formats

– These can be hard to implement correctly
– StringToNumber conversions are interesting
– Ex: TNEF, MIME, PDF



Common Error #1
MOV ECX, USERINPUTPTR
PUSH ECX
LEA ESI, [EBP-100h]
PUSH OFFSET _ss ; "%s"
PUSH ESI
CALL _sprintf
ADD ESP, 0Ch



Common Error #2
MOV EAX, DWORD PTR [EBX]
CMP EAX, 40h
JG TOO_LARGE



Common Error #3
MOV ESI, DWORD PTR [EBX]
LEA EAX, [ESI+18h]
PUSH EAX
CALL malloc
ADD ESP, 4
MOV EDI, EAX
TEST EDI, EDI
JZ ALLOCATION_FAILED

PUSH ESI // Size to Read
PUSH EDI // Destination Buffer
PUSH EBP // File Descriptor
CALL read_file_wrapper
ADD ESP, 0Ch



Common Error #4
XOR EBX, EBX

START_LOOP
MOV AL, [ESI]
INC ESI
INC EBX
TEST AL, AL
JNZ START_LOOP

MOVZX ECX, BX
LEA ESI, [ECX+1]
PUSH ESI
CALL malloc
ADD ESP, 4



Another Error
MOV EAX, DWORD PTR [ESI]
MOV EBX, DWORD PTR [ESI+4]
ADD ESI, 8
XOR EDX, EDX
DIV EBX



Audit Methodology

– Identify Utility Functions
• Naming these will aid in tracing input later
• Ex: Wrappers, FileIO, Allocations



Audit Methodology
– Trace Un-trusted Input

• Examine data that influences:
– Allocations
– Copies

• Structure members
– Initializations are easy to spot
– Use is less easy – binary search for offset



Audit Methodology
– Reverse File Format Processors

• Track class member offsets and sizes
• Will reveal more subtle bugs



Audit Results

– Symantec
• Unchecked offset reconstructing UPX PE header
• Can be triggered by providing a negative offset to

prior heap chunk containing MZ header with
crafted PE header

• Heap overflow with no character restrictions



Audit Results
– McAfee

• Improperly checked file name and path strlen in
LHA level 1 header

• Signature in .dat to detect for malformed LHA file
• Can be triggered my supplying a malformed LHA

file, that also conforms to the PECOFF format
• Stack overflow with ascii character restrictions



Audit Results
– TrendMicro

• Improperly checked filename strlen in ARJ header
• Doesn’t overflow the next chunk’s header, but

does corrupt various pointers, which results in the
address of the filename being written to an
arbitrary destination

• Kernel Heap overflow with ascii character
restrictions



Audit Results
– FSecure

• Improperly checked filename strlen in ARJ header
• Standard heap overflow with ascii character

restrictions



Future Points of Interest

– Large Files
• Signed Checks
• Type Truncation
• Integer Overflows/Wraps/Underflows
• Ida Examples



Future Points of Interest

– New Formats
• Formats implemented due to bugs
• Formats implemented due to wide use

– Product Administration



Questions?


